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Abstract—Despite the apparent benefits of modern social
coding paradigm such as Stack Overflow, its potential security
risks have been largely overlooked (e.g., insecure codes could
be easily embedded and distributed). To address this imminent
issue, in this paper, we bring a significant insight to leverage both
social coding properties and code content for automatic detection
of insecure code snippets in Stack Overflow. To determine if
the given code snippets are insecure, we not only analyze the
code content, but also utilize various kinds of relations among
users, badges, questions, answers and code snippets in Stack
Overflow. To model the rich semantic relationships, we first
introduce a structured heterogeneous information network (HIN)
for representation and then use meta-path based approach
to incorporate higher-level semantics to build up relatedness
over code snippets. Later, we propose a novel hierarchical
attention-based sequence learning model named CodeHin2Vec
to seamlessly integrate node (i.e., code snippet) content with
HIN-based relations for representation learning. After that, a
classifier is built for insecure code snippet detection. Integrating
our proposed method, an intelligent system named iTrustSO is
accordingly developed to address the code security issues in
modern software coding platforms. Comprehensive experiments
on the data collections from Stack Overflow are conducted to
validate the effectiveness of our developed system iTrustSO by
comparisons with alternative methods.

I. INTRODUCTION

Software has played a vital role in modern society for en-
tertainment, education, and social communication, etc. Unlike
conventional approaches, modern software developers heavily
engage in a social coding environment to reuse code snippets
and projects during the process of software development [33].
In particular, Stack Overflow, as the largest online program-
ming discussion platform, has attracted 9.9 million registered
developers [29]. The active discussions and abundant code
snippets make it one of the most important information sources
to software developers [9]. Despite the apparent benefits of
such social coding environment, its potential security risks

Figure 1: Example of code security attacks in Stack Overflow.

have been largely overlooked [1], [15]. According to a recent
study [3], collected question-answer samples from Stack Over-
flow contain various security-related issues such as encryption
with insecure mode, and insecure Application Programming
Interface (API) usage. Those innocent-looking yet insecure
code snippets could cause severe damage or even a disaster if
not properly handled and directly transplanted to production
software. For example, as shown in Figure 1, attackers have
injected malicious cryptocurrency mining code such as Coin-
hive into Stack Overflow; once developers reuse such code
snippets to generate the production software, its users’ devices
could be compromised (e.g., processing power would be stolen
to mine bits of cryptocurrency). To deal with insecure code
snippets included in the questions/answers, Stack Overflow
has no principled way other than labeling the moderator flag,
downvoting those threads or warning in the comments [3].
Given the rich structure and information, there is imminent
need to develop novel and sound solutions to address the code
security issue in Stack Overflow.

In this work, we propose to leverage both social coding
properties and code content for insecure code snippet de-
tection. As a social coding environment, Stack Overflow is
characterized by user communication through questions and
answers, i.e., a rich source of heterogeneous information are
available including users, badges, questions, answers, code
snippets, and their semantic relationships. To utilize such
social coding properties, our previous work [39] proposed
ICSD over heterogeneous information network (HIN) [30] for

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ASONAM ’19, August 27-30, 2019, Vancouver, Canada
c© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6868-1/19/08...$15.00
https://doi.org/10.1145/3341161.3343524

2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining

1097

mailto:permissions@acm.org
https://doi.org/10.1145/3341161.3343524


Figure 2: System architecture of iTrustSO.

insecure code snippet detection. ICSD encodes code content
and social relations to construct the HIN, and then learns node
representations from HIN to detect insecure code snippets.
In this paper, we’d like to take a different tact to see if
we can enhance the representation learning of code snippets
in the detection of insecure ones. Different from ICSD, we
utilize HIN to depict relatedness over code snippets to generate
code-to-code sequences, based on which sequence to sequence
(seq2seq) concept in machine translation is further leveraged
to learn representations of code snippets. More specifically,
we introduce HIN as an abstract representation, and then use
meta-path [30] to incorporate higher-level semantic relations
to build up relatedness over the code snippets. Afterwards,
considering both code content and social coding properties, we
propose a novel seq2seq learning model named CodeHin2Vec
for representation learning of code snippets. Different from the
traditional seq2seq model [31], [21], CodeHin2Vec extends the
basic encoder-decoder architecture [8] by elaborately devising
hierarchical attention mechanism to first learn the context
between node embeddings in the input sequence, and then
learn the alignments and relevances between hidden layer
vectors for the output sequence generation. This allows a
refined architecture to cope better with sequence modeling
and thus fully exploit code content and HIN structure to learn
better representations of code snippets. After that, a classifier is
built for insecure code snippet detection. We develop a system
called iTrustSO shown in Figure 2 integrating our proposed
method, which has the following merits:

• It introduces HIN as an abstract representation of Stack
Overflow data, and exploits a meta-path based approach
to characterize the relatedness over code snippets. The
proposed solution provides a natural way of expressing
complex relationships in social coding platforms.

• It integrates HIN with seq2seq concept for representation
learning. In iTrustSO, a new model CodeHin2Vec is pro-
posed to seamlessly combine code content and HIN-based
relations to learn representations of code snippets, in which
code sequences are first generated based on the walk paths
guided by different meta-paths; in each code sequence,
its elements are represented by the code content feature
vectors; then, LSTM using hierarchical attention mechanism
is leveraged for code sequence modeling. CodeHin2Vec is

a generic framework which can also be applicable for other
representation learning task.

• Comprehensive experimental studies demonstrate the per-
formance of our developed system iTrustSO, which is
practical for automatic detection of insecure code snippets.

II. PROPOSED METHOD

In this section, we present the detailed approaches of how
we represent and detect the code snippets in Stack Overflow.

A. Feature Extraction

Code snippets. Code snippets in Stack Overflow can be first
separated from accompanying texts in question and answer
threads through pairs of 〈code〉 〈/code〉 tags; afterwards, each
code snippet can be represented by a feature vector (i.e., xc)
to denote its code content using word2vec [25], [24].
Social coding properties. To characterize a code snippet in
Stack Overflow, we not only consider its code content, but also
extract its social coding properties including: i) R1: question-
have-code relation describes whether a question thread has a
code snippet embedded; ii) R2: answer-include-code relation
denotes that an answer thread includes a code snippet; iii)
R3: user-post-question describes the relationship between a
user and a question he/she posts; iv) R4: user-supply-answer
relation represents if a user supplies an answer; v) R5: answer-
echo-question relation denotes if an answer echoes a question;
vi) R6: user-gain-badge relation means a user gains a badge,
denoting his/her level (i.e., gold, silver, or bronze) over differ-
ent contributions (e.g., question, answer, etc.).

B. HIN Construction

This section introduces how to use the extracted entities and
social coding properties to represent code snippets in Stack
Overflow. We first present the concepts related to HIN:

Definition 2.1: Heterogeneous information network (HIN)
[30]. A HIN is defined as a graph G = (V, E) with an entity
type mapping φ: V → A and a relation type mapping ψ:
E → R, where V denotes the entity set and E is the relation
set, A denotes the entity type set and R is the relation type
set, and the number of entity types |A| > 1 or the number of
relation types |R| > 1. The network schema TG = (A,R) for
a HIN G is a graph with nodes as entity types from A and
edges as relation types from R.
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For our case, we have five entity types and six types of
relations among them; accordingly, the network schema for
HIN in our application is shown in Figure 3.

Figure 3: Network schema for HIN in our application.

The different types of entities and relations motivate us to
use a machine-readable representation to enrich the seman-
tics of relatedness among code snippets. To handle this, the
concept of meta-path [30] to formulate the higher-order rela-
tionships among entities in HIN is extended to our application
of insecure code snippet detection.

Definition 2.2: Meta-path [30]. A meta-path P is a path
defined on the graph of network schema TG = (A,R), and is
denoted in the form of A1

R1−−→ A2
R2−−→ ...

RL−−→ AL+1, which
defines a composite relation R = R1·R2·. . .·RL between types
A1 and AL+1, where · denotes relation composition operator,
and L is the length of P .

Table I: Meta-paths built for insecure code snippet detection
ID Meta-paths

PID1 c
I−1

−−→ a
S−1

−−→ u
S−−→ a

I−−→ c

PID2 c
H−1

−−→ q
P−1

−−→ u
P−−→ q

H−−→ c

PID3 c
I−1

−−→ a
E−−→ q

P−1

−−→ u
P−−→ q

E−1

−−→ a
I−−→ c

PID4 c
H−1

−−→ q
E−1

−−→ a
S−1

−−→ u
S−−→ a

E−−→ q
H−−→ c

PID5 c
I−1

−−→ a
S−1

−−→ u
G−−→ b

G−1

−−→ u
S−−→ a

I−−→ c

PID6 c
H−1

−−→ q
P−1

−−→ u
G−−→ b

G−1

−−→ u
P−−→ q

H−−→ c

PID7 c
I−1

−−→ a
E−−→ q

P−1

−−→ u
G−−→ b

G−1

−−→ u
P−−→ q

E−1

−−→ a
I−−→ c

PID8 c
H−1

−−→ q
E−1

−−→ a
S−1

−−→ u
G−−→ b

G−1

−−→ u
S−−→ a

E−−→ q
H−−→ c

Given a network schema with different types of entities and
relations, we can enumerate a lot of meta-paths. In our appli-
cation, based on the collected data, resting on the six different
kinds of relationships, we design eight meaningful meta-paths
for characterizing relatedness over code snippets, i.e., PID1-
PID8 shown in Table I (symbols are the abbreviations shown in
Figure 3). Different meta-paths depict the relatedness between
two code snippets at different views. For example, a typical
one to formulate the relatedness over code snippets in Stack

Overflow is PID1: c I−1

−−→ a
S−1

−−→ u
S−−→ a

I−−→ c which means
that two code snippets can be connected as they are included
in the answers supplied by the same user.

C. CodeHin2Vec

To devise a comprehensive solution to combine both node
(i.e., code snippet) content and HIN-based relations for inse-
cure code snippet detection, we observe from our previous
work [39] that the HIN-based neighborhood relationships
among code snippets can be represented by the code sequences
(denoted as CodeSeq) based on different meta-paths. In this

way, the generated CodeSeqs can preserve both semantic and
structure information of HIN. To further couple CodeSeqs with
code content, a straightforward yet novel way is to use the
content feature vector xc to represent each code snippet in
the CodeSeq. To this end, the representation learning of code
snippets can be viewed as a sequence modeling task. As LSTM
has shown significant improvement in language modeling [4],
we leverage its power to seamlessly integrate code content and
HIN structure into hidden layer vectors that can be used as the
representations of code snippets [21].

Although it is promising to comprehensively utilize LSTM
to learn the mapping from the code content sequence to code
identity sequence, it still faces the following two challenges:
(1) word2vec assigns each code snippet a static embedding
vector based on code content which is not context-aware to
different sequences it interacts with. For example, as illustrated
in Figure 4, guided by the designed meta-paths, we may
generate CodeSeq-A and CodeSeq-B. With function fileProcess
defined, Code-1 in CodeSeq-A performs as file encryption for
Ransomware while Code-3 in CodeSeq-B implements the reg-
ular file reading and writing; in this respect, even though Code-
2 listed in both sequences calls the same function fileProcess,
its embedding vector should be significantly different which
may demonstrate insecure potential when interacting with
Code-1 and normal aspect when related to Code-3. LSTM
is known to learn the sequential dependencies [27], but strict
to align the positions of the input sequence; therefore, con-
textualized code content embeddings may help to refine the
hidden-layer information in the early stage. (2) Since LSTM
needs to read the whole input sequence to further generate
the output sequence, its performance using a basic encoder-
decoder architecture may degrade as the length of an input
sequence increases [7], [4] which may in turn degenerate the
representations learned from hidden layers, especially in our
case that code sequences are much longer than the sentences.

Attention mechanism has shown remarkable effectiveness
in various sequence modeling tasks, allowing models to learn
alignments between different modalities [34], [4], [23], [19].
In this work, to address the challenges above, we propose
CodeHin2Vec to elaborate a hierarchical attention mechanism
into LSTM to fully exploit code content and HIN structure
to learn effective representations of code snippets, which first
generates CodeSeqs based on the walk paths guided by dif-
ferent meta-paths; and then leverages LSTM with hierarchical
attention mechanism for CodeSeq modeling.

Figure 4: Different contexts among code snippets.
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CodeSeq generation guided by different meta-paths. Given
a source node vj in a homogeneous network, the traditional
random walk is a stochastic process with random variables
v1j , v

2
j , ..., v

k
j such that vk+1

j is a node chosen at random from
the neighbors of node vk. The transition probability p(vi+1

j |vij)
at step i is the normalized probability distributed over the
neighbors of vij by ignoring their node types. However, this
mechanism is unable to capture the semantic and structural
correlations among different types of nodes in a HIN. In
our application, given a HIN G = (V, E) with schema
TG = (A,R), and a set of different meta-paths P = {Pj}nj=1,
each of which is in the form of A1 → ...At → At+1...→ Al,
we put a random walker to traverse the HIN. The random
walker first randomly chooses a meta-path Pk from P and the
transition probabilities at step i are defined as follows:

p(vi+1|viAt
,P) =

λ
|P|

1
|NAt+1

(vi
At

)|

if (vi+1, viAt
) ∈ E , φ(viAt

) = Ac, φ(v
i+1) = At+1

1
|NAt+1

(vi
At

)|

if (vi+1, viAt
) ∈ E , φ(viAt

) 6= Ac,

φ(vi+1) = At+1, (At, At+1) ∈ Pk
0 otherwise

(1)

where φ is the node type mapping function, NAt+1(v
i
At
)

denotes the At+1-type neighborhood of node viAt
, Ac is entity

type of Code, and λ is the number of meta-paths starting with
Ac → At+1. For each walk path, the nodes whose entity types
are not Code will be removed; then the remaining ones form a
CodeSeq, whose element is represented by the content feature
vector xc. In such way, given walk path length l, a CodeSeq
is presented as (xc1 ,xc2 , ...,xcl).

CodeSeq modeling with LSTM. LSTM learns a mapping
from an input sequence to an output sequence. As intermediate
states, a hidden vector is generated for each timestep; we
can extract it as the embedding vector for the input at that
timestep. In our application, we employ an encoder-decoder
LSTM architecture [8] for CodeSeq modeling in which two
attention layers are elaborately added to improve the quality
of representation learning (as illustrated in Figure 5).

Encoder attention: Resting on all the content vectors in
the input sequence, the encoder attention layer computes the
contextualized embedding for each code snippet as a weighted
sum where the weight, also called context score, assigned
to each content vector is computed by a dot product of the
corresponding pair of content vectors [34]. Specifically, given
an input CodeSeq (xc1 ,xc2 , ...,xcl), for any two code snippets
ct and ci, the context score can be calculated as

S(xct ,xci) = xct>xci , (2)

where > denotes the dot product, and thus the contextualized
embedding for code snippet ct can be computed as

x̃ct =
l∑
i=1

exp(S(xct ,xci))∑l
j=1 exp(S(xct ,xcj ))

xci . (3)

Figure 5: Architecture of LSTM using hierarchical attention.

In this sense, a CodeSeq can be refined as (x̃c1 , x̃c2 , ..., x̃cl),
which will be used as the actual input sequence.

Encoder: The encoder reads (x̃c1 , x̃c2 , ..., x̃cl) through the
hidden layer function H so that each hidden layer vector het
at timestep t can be denoted as

het = H(x̃ct ,het−1), (4)

where H is implemented using memory cells to store infor-
mation, which can be formulated as the following composite
functions [16]:

it = σ(Wxix̃ct +Whih
e
t−1 +Wcict−1 + bi) (5)

ft = σ(Wxf x̃ct +Whfh
e
t−1 +Wcfct−1 + bf ) (6)

ct = ft ◦ ct−1 + it ◦ tanh(Wxcx̃ct +Whch
e
t−1 + bc) (7)

ot = σ(Wxox̃ct +Whoh
e
t−1 +Wcoct−1 + bo) (8)

het = ot ◦ tanh(ct) (9)

where σ is the logistic sigmoid function, it, ft, ot, ct are
the input gate, forget gate, output gate, and cell activation
vectors respectively, Ws are the weight matrices, bs are
the bias vectors, and ◦ is the point-wise product between
two vectors. Since the input sequence has no direction, in
order to learn both the forward and backward sequential
dependency information, we utilize bidirectional encoder so
that hidden layer vector het at timestep t can be concatenated as
het = [

−→
het ;
←−
het ]. After forward and backward reading CodeSeq,

the concatenation of the last two hidden states [
−→
hel ;
←−
he1] is used

as the summary vector s of the whole input sequence.
Decoder attention: The decoder attention layer exploits all

the hidden states of the encoder to compute the aligned and
joint information as the context vector [4], [23], which is
integrated with the summary vector s to extract the target code
identity. Similar to the encoder attention, the alignment scores
need to be first defined to formulate such context vector as
a weighted sum. Note that, unlike the dot product attention,
decoder attention should allow the gradient of the cost function
to be backpropagated through [4]. We accordingly use a simple
feed-forward neural network to compute the alignment score

αt = W2
αReLU(W1

αh
e
t + b1

α) + b2
α, (10)

where Wαs and bαs denote the weight matrices and the bias
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vectors, and the alignment score vector αt trained by all the
other hidden states of the encoder reflects the importance of
het in generating yt. The context vector for het can thus be

h̃et =
l∑
i=1

exp(αt,i)∑l
j=1 exp(αt,j)

hei . (11)

Decoder: The decoder takes the summary vector s as input
(i.e., hd0 = s) and generates a sequence of target hidden states;
each hidden state hdt at timestep t can be calculated as

hdt = H(0,hdt−1), (12)

where 0 is an all-zero vector. Given the target hidden state hdt
and the context vector h̃et , we concatenate them to formulate
an attentional hidden state h̃dt = [h̃et ; hdt ] [23]. Accordingly,
the output vector yt ∈ R|V| can be generated as follows [16]

yt = σ(Whyh̃
d
t + by). (13)

yt is capable to predict the real code snippet ct through a
softmax layer. The sequence loss L is adopted to measure the
correctness of decoding, which is computed as

L = −
l∑
t=1

log p(ct|yt) = −
l∑
t=1

log
exp(yctt )∑|V|
i=1 exp(y

ci
t )
. (14)

The weights can be efficiently calculated with backpropagation
through time [35], [16], and the LSTM model can then be
trained using Adam optimization algorithm.

For the generated CodeSeqs guided by different meta-paths,
each code snippet may appear in multiple CodeSeqs. Suppose
that code snippet ct exists in |ct| CodeSeqs, by doing avg
pooling over all hei ’s for code snippet ct, ∀i = 1, ..., |ct|, we
obtain an embedding h for each code snippet

h = avgPooling({hei : i = 1, ..., |ct|}). (15)

Using CodeHin2Vec, the mapped feature vectors of code
snippets, encoding the informaiton of code content and HIN-
based relations, can be fed to a classifier to train the classifi-
cation model, based on which the unlabeled code snippets can
be predicted if they are insecure or not.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we fully evaluate the performance of
iTrustSO in insecure code snippet detection. We consider Java
programming language for Android app as a case study. Based
on our prior work ICSD [39], in this paper, we further expand
our data collection and annotation from Stack Overflow: (1)
using our developed crawlers, we collect 505,548 question
threads and 719,430 answer threads posted by 229,394 users
including 821,792 code snippets, through March 2010 to
October 2018; (2) we also expand our annotated data in
[39] to finally obtain 21,989 labeled code snippets (10,013
are insecure while 11,976 are secure) as the ground truth to
evaluate different detection methods. To quantitatively validate
the effectiveness of different methods, we use accuracy (ACC)
and F1 measure (F1) as the performance measures.

A. Evaluation of Different Meta-paths

In this set of experiments, given a specific meta-path
scheme, we use a basic LSTM to learn the latent represen-
tations of code snippets in HIN, which is then fed to SVM
for detection. Here we perform 10-fold cross validations for
evaluation. The experimental results are shown in Table II,
from which we can see that different meta-paths indeed show
different performances: (1) PID1, PID3, PID5, and PID7
perform better than PID2, PID4, PID6, and PID8; the reason
behind this is that the code snippets posted in the answer
threads are more likely to be reused by the developers than
the ones posted in question threads, and thus they have closer
connections. (2) PID3 outperforms the others, which indicates
that its semantics reflecting the insecure code snippet detection
problem is better than the others. (3) PID9 using different
meta-paths is more expressive than individuals in depicting
the code snippets and thus achieve better performance.

Table II: Detection Results of different meta-paths
ID Meta-paths included Recall Precision ACC F1

PID1 – 0.8481 0.7956 0.8316 0.8210
PID2 – 0.8098 0.7491 0.7899 0.7783
PID3 – 0.8596 0.8119 0.8454 0.8351
PID4 – 0.8344 0.7769 0.8155 0.8046
PID5 – 0.8605 0.8086 0.8437 0.8337
PID6 – 0.8140 0.7588 0.7975 0.7854
PID7 – 0.8042 0.7444 0.7851 0.7731
PID8 – 0.7843 0.7203 0.7631 0.7509
PID9 P = (PID1,..., PID8) 0.8785 0.8415 0.8693 0.8596

B. Evaluation of Attentions

In this set of experiments, we’d like to assess whether
the hierarchical attention mechanism devised in our model is
meaningful for representation learning. To this end, we explore
the performances of basic LSTM without attention (LSTM-b),
LSTM with encoder attention (LSTM-e), LSTM with decoder
attention (LSTM-d), and CodeHin2Vec. The better detection
result implies that the learn representations take better ad-
vantage of the corresponding sequence learning architecture.
From the results illustrated in Figure 6, we have the following
observations: (1) LSTM-e and LSTM-d with single attention
layer both outperform LSTM-b without attention; (2) Code-
Hin2Vec achieves the most promising performance for fully
utilizing the contextualized input embeddings and the aligned
information from the hidden states of the encoder. In other
words, CodeHin2Vec has potential to let LSTM learn better
sequential dependencies and code better with the sequence

Figure 6: Attention evaluation.
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Table III: Comparisons of CodeHin2Vec with other network representation learning methods in insecure code snippet detection

Metric Method Feature 10% 20% 30% 40% 50% 60% 70% 80% 90%

ACC

word2vec Content 0.6554 0.6757 0.6989 0.7105 0.7379 0.7590 0.7725 0.7730 0.7753
DeepWalk Relation 0.6263 0.6632 0.6678 0.6809 0.7087 0.7132 0.7349 0.7403 0.7430

metapath2vec Relation 0.7241 0.7415 0.7562 0.7747 0.7898 0.8065 0.8035 0.8204 0.8312
TADW Content&Relation 0.7659 0.7761 0.7902 0.8029 0.8144 0.8312 0.8394 0.8478 0.8537
ICSD Content&Relation 0.8026 0.8234 0.8487 0.8588 0.8783 0.8884 0.8968 0.9035 0.9107

CodeHin2Vec Content&Relation 0.7983 0.8281 0.8630 0.8665 0.8752 0.8787 0.8975 0.9175 0.9223

F1

word2vec Content 0.6292 0.6507 0.6756 0.6875 0.7166 0.7379 0.7519 0.7530 0.7560
DeepWalk Relation 0.6023 0.6415 0.6439 0.6551 0.6871 0.6911 0.7139 0.7203 0.7233

metapath2vec Relation 0.7005 0.7199 0.7356 0.7552 0.7711 0.7884 0.7853 0.8038 0.8147
TADW Content&Relation 0.7446 0.7565 0.7717 0.7855 0.7977 0.8147 0.8239 0.8330 0.8390
ICSD Content&Relation 0.7855 0.8083 0.8338 0.8454 0.8662 0.8769 0.8866 0.8933 0.9015

CodeHin2Vec Content&Relation 0.7831 0.8135 0.8502 0.8536 0.8624 0.8665 0.8873 0.9084 0.9160

extraction from the proper context information, which in turn
generates better representations for code snippets.

C. Evaluation of CodeHin2Vec

Here, CodeHin2Vec is evaluated by comparisons with sev-
eral representation learning methods: (1) word2vec [24] is a
baseline using code content information; (2) DeepWalk [26] is
a homogeneous network embedding method leveraging rela-
tion information; (3) metapath2vec [11] is a HIN embedding
model utilizing HIN-based relations; (4) TADW [36] considers
both content and relation information for homogeneous net-
work representation learning; (5) ICSD [39] takes content and
relation into account in HIN. For DeepWalk and TADW, we
ignore the heterogeneous property of HIN and directly feed the
HIN for embedding; in metapath2vec, a walk path is generated
based on a single meta-path scheme; in ICSD, code content
is extracted as keywords to be devised to HIN. The parameter
settings used for CodeHin2Vec are in line with typical values
used for the baselines: content dimension c = 300, vector
dimension d = 200, walks per node r = 10, walk length
l = 80 (TADW: walk steps are set to 2), and window size
w = 10. To facilitate the comparisons, we randomly select
a portion of labeled code snippets (ranging from 10% to
90%) for training and the remaining ones for testing. SVM is
used as the classification model for all the methods. Table III
illustrates the detection results: CodeHin2Vec outperforms all
baselines in terms of ACC and F1 in most cases. That is to say,
CodeHin2Vec learns significantly better code snippet repre-
sentation than current state-of-the-art methods. The success of
CodeHin2Vec lies in the seamless integration of code content
with HIN-based relations for representation learning, which
leverages the advantage of (1) CodeSeq generation based on
the different meta-paths and (2) the CodeSeq modeling power
of LSTM using hierarchical attentions.

D. Evaluation of Parameters

In this set of experiments, we first conduct the sensitivity
analysis of how different choices of parameters will affect
the performance of CodeHin2Vec. From the results shown in
Figure 7(a) and 7(b), we can observe that the balance between
computational cost (number of walks per node r and walk
length l in x-axis) and efficacy (F1 in y-axis) can be achieved
when r ≥ 10 and l ≥ 80. As shown in Figure 7(c), we

Figure 7: Parameter sensitivity evaluation.

can see that the performance tends to be stable once content
vector dimension c reaches around 200 to 300; similarly,
from Figure 7(d) we can find that the performance inclines
to be stable when vector dimensions d increases to around
200 to 400. Overall, CodeHin2Vec is not strictly sensitive to
these parameters, and is able to reach high performance under
a cost-effective parameter choice. We then further evaluate
the scalability of CodeHin2Vec which can be parallelized
for optimization. We run the experiments using the default
parameters with different number of threads (i.e., 1, 4, 8, 12,
16), each of which utilizes one CPU core. Figure 7(e) shows
the speed-up of CodeHin2Vec deploying multiple threads over
the single-threaded case, which reveals that the model achieves
acceptable sub-linear speed-ups as the line is close to the
optimal line; while Figure 7(f) shows that the performance
remains stable when using multiple threads for model updat-
ing. Overall, the proposed system are efficient and scalable
for large-scale HIN with large numbers of nodes. For stability
evaluation, Figure 7(g) shows the ROC curves of CodeHin2Vec
based on the 10-fold cross validations; it achieves an average
0.9043 TPR at the 0.1221 FPR for detection.
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E. Comparisons with Traditional Machine Learning Methods

In this set of experiments, iTrustSO is compared with other
traditional machine learning methods. For these methods, we
construct three types of features: f–1: content-based features
(i.e., xc); f–2: two original relation-based features (i.e., R1
and R2); f–3: augmented features of content-based features
and R1–R2. Based on these features, we consider two typical
classification models, i.e., Naive Bayes (NB) and SVM. The
experimental results shown in Table IV illustrates that feature
engineering (f-3) helps the performance of machine learning,
but iTrustSO leveraging the knowledge represented as HIN
and the long-range influence among code snippets learned
from LSTM with attentions significantly outperforms other
baselines. This again demonstrates that, to detect the insecure
code snippets, iTrustSO using CodeHin2Vec to seamlessly
integrate node content with HIN relations is able to build the
higher-level semantic and structural connection between code
snippets with a more expressive and comprehensive view and
thus achieves better detection performance.

Table IV: Comparisons of other machine learning methods

Metric NB SVM iTrustSO
f-1 f-2 f-3 f-1 f-2 f-3

ACC 0.7493 0.6854 0.7952 0.7753 0.7034 0.8415 0.9184
F1 0.7284 0.6613 0.7834 0.7560 0.6793 0.8317 0.9098

F. Case Studies

To gain deeper insights into the security-related risks of
modern social coding platform of Stack Overflow, in this
section, based on our developed system iTrustSO, we fur-
ther analyze 8,105 detected insecure code snippets in Stack
Overflow. We categorize the security risks or vulnerabilities
resulted from these insecure code snippets into six types:
(1) Android Manifest configuration (28.43%), (2) WebView
component (03.20%), (3) data security (22.62%), (4) file
directory traversal (15.15%), (5) implicit intents (09.06%), and
(6) security checking (21.55%). From these categories, we
can observe that the most prevalent insecure code infiltration
for Android apps in Stack Overflow is Android Manifest
configuration (28.43%), which would pose serious threats
to Android apps since Manifest retains all the components,
and structure information for an app [6]. Such insecure code
snippets include violation of least permission request, the
component features being configured as exported, and data
backup and debuggable setting being turned on, etc. For
example, as shown in Figure 8, code (a) configures activity

Figure 8: Insecure codes with manifest vulnerabilities.

component as exported, and code (b) configures data backup
and debuggable setting as turned on, both of which could be
exploited by cyberattackers to perform the attacks on Android
apps. Actually, these types of code snippets were provided by
many experienced and inexperienced users, which can thus be
easily copied and pasted by other users in their answer threads
responding to different posted questions.

The study based on the detected insecure code snippets in
Stack Overflow using our developed system iTrustSO demon-
strates that knowledge gained from social coding platform data
mining could facilitate the understanding and thus enhance its
code security in modern software programming ecosystem.

IV. RELATED WORK

There have been many works on knowledge discovery from
Stack Overflow data [10], [20], [22], [5], [2] - from gamifi-
cation motivation for voluntary contributions [5], discussion
interest trend [20] to developer interaction [2] and repair
patterns from extracted code samples [22]. However, most
of these works have focused in Stack Overflow semantics
and users behavior but rarely addressed the issue of code
security analysis. The only exceptions appear to be [1] and [15]
which both exploited Android application (app) codes as a case
study to evaluate the security of information source in Stack
Overflow. Though those research results are promising, [1]
only performed empirical studies while [15] merely analyzed
the code snippet itself without considering any relationship to
other Stack Overflow data. Different from the existing works,
in this paper, to detect the insecure code snippets in Stack
Overflow, we propose to utilize not only the code content,
but also social coding properties, based on which, the code
snippets are depicted by a structured HIN.

HIN has been intensively deployed to various applications,
such as authorship identification [40], malware detection [18],
[12], [38], and health intelligence [14], [13]. To reduce the
high computation and space cost in network mining, many
efficient network embedding methods have been proposed,
including homogeneous network representation learning (e.g.,
DeepWalk [26], node2vec [17], LINE [32], and TADW [36])
and HIN representation learning (e.g., ESim [28], metap-
ath2vec [11] and HIN2vec [37]). Unfortunately, these methods
cannot be directly employed in our application, i.e., we aim
to seamlessly combine both code content and HIN-based
relations for insecure code snippet detection in Stack Overflow.
To tackle this challenge, our previous work [39] proposed
an automatic system ICSD over HIN which treats keywords
extracted from code content as a type of entities that are
further integrated with other social coding entities to facilitate
HIN representation learning. In this paper, we take a different
tact that represents code content as feature vector while
extracts HIN as pure relations over code snippets, and then
inspired by the effectiveness of attention mechanism in various
learning tasks [34], [23], [4], we further propose CodeHin2Vec
to embed HIN-based relations with code content through a
hierarchical attention-based sequence learning model for the
representation learning.
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V. CONCLUSION

To enhance code security in modern social coding platforms,
in this paper, we exploit social coding properties in addition
to code content for automatic detection of insecure code
snippets in Stack Overflow. To depict the code snippets, we
not only analyze the code content, but also utilize various
kinds of relations among users, badges, questions, answers
and code snippets in Stack Overflow. To model the rich
semantic relationships, we first introduce a structured HIN
for representation and then use meta-path based approach
to incorporate higher-level semantics to build up relatedness
over code snippets. Later, we propose a novel hierarchical
attention-based sequence learning model named CodeHin2Vec
to seamlessly embed code content with HIN-based relations
for representation learning. After that, a classifier is built
for insecure code snippet detection. The experimental results
based on the data collections from Stack Overflow demonstrate
that iTrustSO integrating our proposed method outperforms
alternative approaches in insecure code snippet detection.
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